Validation of Performance-Related Specification of High RAP Content Surface Mixtures Placed on High Volume Roads

North East Asphalt User Producer Group (NEAUPG) 2024 Springfield, MA ← October 16th, 2024

Professor Walaa S. Mogawer, P.E. (MA & RI), F.ASCE Professor of Civil & Environmental Engineering Director - Highway Sustainability Research Center

Acknowledgement

Mr. Ed Naras

Pavement Management Engineer **MassDOT**

Mr. Alexander Austerman, P.E.

Senior Research Engineer Highway Sustainability Research Center University of Massachusetts Dartmouth

Dr. Ibrahim Abdalfattah

Research Engineer Highway Sustainability Research Center University of Massachusetts Dartmouth

UMass | Dartmouth

Mr. Kevin Stuart

Consultant Formerly with FHWA

Outline

- 1. Background
- 2. Objectives
- 3. Methodology
- 4. Results
- 5. Conclusions

Background

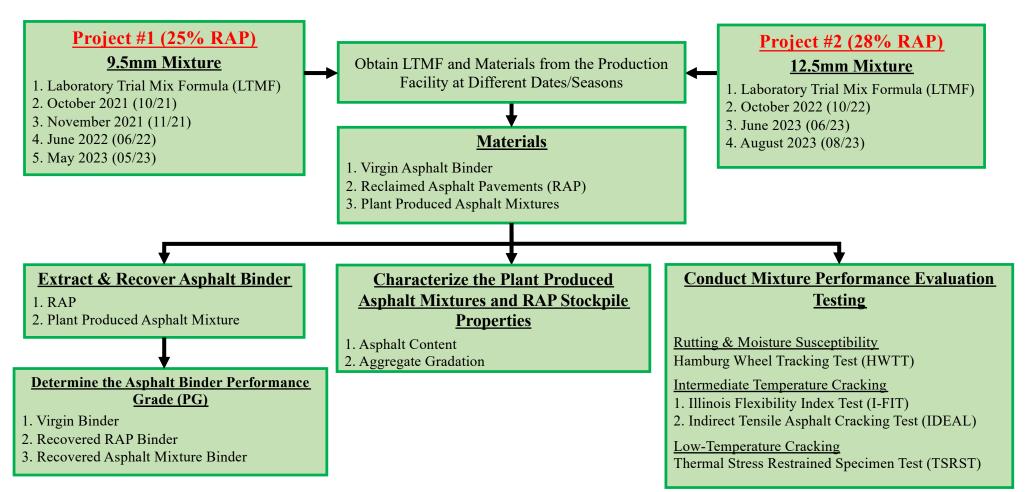
➤MassDOT's current specifications only allow up to 15% RAP in its top surface asphalt mixture layer.

Based on a 2020 MassDOT funded study entitled Influence of Reclaimed Asphalt Pavement (RAP) Source and Virgin Binder Source on RAP Specifications and Balanced Mix Design the following was concluded:

- The RAP content could be increased over the 15% maximum based on the properties of the RAP, which depends on its source.
- For the same RAP content, RAP source has a significant effect on the cracking resistance of asphalt mixtures.

Background

➤ MassDOT approved demonstration projects using high RAP surface asphalt mixtures with RAP contents between 25% and 30% for high volume interstate projects to pilot the production, placement, and variability of high RAP content surface mixtures.



Objectives

- 1. Document variability in virgin binder, RAP, and mixtures properties across different production seasons.
- 2. Characterize the impact of virgin binder and RAP properties on mixture performance.
- 3. Evaluate the influence of material variations during production on the balanced performance of mixtures across different seasons.

Experimental Plan

Asphalt Binder Test Results - Virgin Binders

Project #1 (25% RAP)								
Sample Date	Binder PG	Average ΔT _C						
LTMF	PG64(64E) -34	+0.8						
10/21	PG70(64E) -28	-0.3						
11/21	PG64(64E) -34	+0.7						
06/22	PG70(64E) -34	+0.3						
05/23	PG64(64E) -34	+0.5						

Project #2 (28% RAP)								
Sample Date	Binder PG	Average ΔT _C						
LTMF	PG70(64E) -34	+0.1						
10/22	PG70(64E) -34	+0.3						
06/23*	PG64(64V) -28	+0.5						
08/23	PG64(64V) -34	+0.7						

* Virgin binder 64E-28 with recycling agent

The final blended binder grade (RAP and virgin) i	in the mixture should be a PG64E-28.
---	--------------------------------------

Asphalt Binder Test Results - RAP Binders

Project #1 (25% RAP)							
Sample Date	Binder PG	Average ΔT _C					
LTMF	PG88-16	-2.9					
10/21	PG88-16	-2.8					
11/21	PG82-22	-2.3					
06/22	PG82-22	-1.1					
05/23	PG88-16	-3.4					

Project #2 (28% RAP)								
Sample Date	Binder PG	Average ΔT _C						
LTMF	PG88-16	-1.6						
10/22	PG88-16	-1.9						
06/23	PG88-16	0.0						
08/23	PG88-16	-0.7						

- For Project #1, the RAP binder high- and low-temperature grades changed by one grade from LTMF to production in some instances.
- This highlights the need to verify the RAP stockpile properties during production.

Asphalt Binder Test Results - Mixture Binders

Project #1 (25% RAP)								
Sample Date	Binder PG	Average ΔT _C						
LTMF	PG76(64E) -28	-1.1						
10/21	PG70(64V) -28	-1.0						
11/21	PG70(64E) -28	-2.2						
06/22	PG70(64V) -22	-2.4						
05/23	PG70(64V) -28	1.2						

Project #2 (28% RAP)								
Sample Date	Binder PG	Average ΔT _C						
LTMF	PG88(64E) -22	-3.5						
10/22	PG82(64E) -22	-1.0						
06/23	PG82(64E) -22	-1.3						
08/23	PG76(64V) -28	+0.2						

Asphalt Binder Test Results - Mixture Binders

- Not all extracted and recovered mixture binders met the MassDOT specified criteria of a PG64E-28.
- For Project #1 most of the extracted and recovered mixture binders met the MassDOT low-temperature PG grade criterion of -28°C. The exception was the 06/22 mixture.
- For Project #2, most of the binders did not meet the MassDOT low-temperature PG grade criterion. Only the binder extracted and recovered from the 05/23 mixture was -28°C.
- The ΔT_c results of the extracted and recovered mixture binders indicated a promising resistance to non-load associated cracking as all binders had ΔT_c values higher than the suggested threshold of warmer than -5.0°C

RAP Aggregate Gradation & Binder Content Results

Project #1 (25% RAP)									
	LTMF	10/21	11/21	06/22	05/23		Standard Deviation	Suggested NCHRP 752 Standard Deviation Limits	
19 mm (3/4")	100	100	100	100	100		0	< 5.0	
12.5 mm (3/4")	98.1	97.3	98.5	97.6	98.8		0.63	< 5.0	
9.5 mm (3/4")	92.4	90.6	90.8	88.2	93.4		1.9	< 5.0	
4.75 mm (No. 4)	69.7	71.9	63.5	61.2	73.7		5.4 F	< 5.0	
2.36 mm (No. 8)	51.9	57.0	46.1	44.2	57.4		6.05 F	< 5.0	
1.18 mm (No. 16)	39.0	44.0	33.8	32.7	44.1		5.41 F	< 5.0	
0.6 mm (No. 30)	28.4	32.1	24.5	24.1	32.4		3.99	< 5.0	
0.3 mm (No. 50)	18.8	21.7	16.7	17.1	21.8		2.46	< 5.0	
0.15 mm (No. 100)	11.7	13.5	10.3	11.0	13.5		1.44	< 5.0	
0.075 mm (No. 200)	7.5	8.7	6.5	7.1	8.5		0.93	< 1.5	
Binder Content, %	4.88	5.37	5.15	5.00	5.46		0.24	< 0.5	

Note: F= Standard deviation of measurements outside suggested NCHRP 752 limits

RAP Aggregate Gradation & Binder Content Results

Project #2 (28% RAP)									
	LTMF	10/22	06/23	08/23		Standard Deviation	Suggested NCHRP 752 Standard Deviation Limits		
19 mm (3/4")	100.0	100.0	100.0	100.0		0	< 5.0		
12.5 mm (3/4")	98.5	98.5	99.0	99.0		0.28	< 5.0		
9.5 mm (3/4")	93.4	94.4	95.4	93.1		1.06	< 5.0		
4.75 mm (No. 4)	65.7	71.1	70.8	73.3		3.22	< 5.0		
2.36 mm (No. 8)	45.4	53.4	50.1	56.0		4.56	< 5.0		
1.18 mm (No. 16)	33.3	41.4	37.7	40.9		3.74	< 5.0		
0.6 mm (No. 30)	24.8	31.3	28.9	29.5		2.76	< 5.0		
0.3 mm (No. 50)	17.8	22.2	21.3	20.9		1.95	< 5.0		
0.15 mm (No. 100)	11.6	15.0	14.9	14.1		1.56	< 5.0		
0.075 mm (No. 200)	7.7	10.7	10.7	9.5		1.41	< 1.5		
Binder Content, %	6.08	6.16	6.06	6.04		0.05	< 0.5		

Note: F= Standard deviation of measurements outside suggested NCHRP 752 limits

Mixture Property Test Results

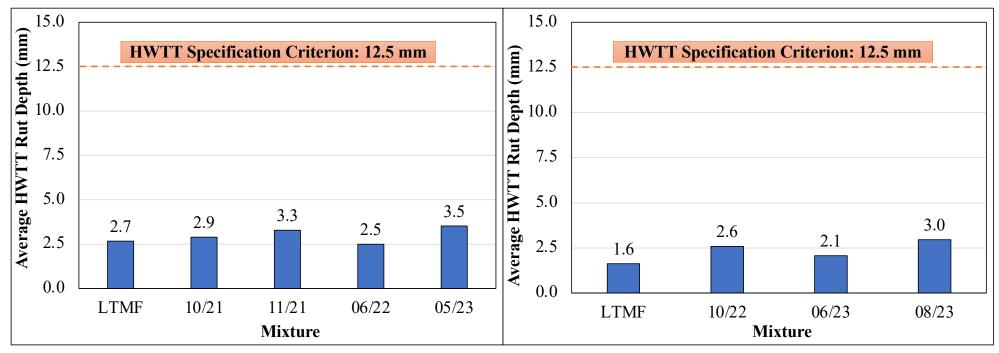
Project #1 (25% RAP)										
							9.5 mm	Lower	Upper	
	LTMF	10/21	11/21	06/22	05/23		Superpave	Engineering	Engineering	
							Specification	Limit (LEL)	Limit (UEL)	
19 mm (3/4")	100	100	100	100	100		100	100	100	
12.5 mm (3/4")	100	98.2 F	98.9 F	99.5 F	99.9 F		100 min	100	100	
9.5 mm (3/4")	94.0	92.6	93.3	95.2	96.4		90-100	90	100	
4.75 mm (No. 4)	62.0	59.8	59.1	68.2 F	66		90 max	56	68	
2.36 mm (No. 8)	40.0	39.7	39.1	47.3 F	43.1		32-67	35	45	
1.18 mm (No. 16)	29.0	27.1	26.8	31.6	29		-	26	32	
0.6 mm (No. 30)	20.0	18.4	18.5	21.2	19.5		-	17	23	
0.3 mm (No. 50)	13.0	12.2	12.6	12.8	12.6		-	10	16	
0.15 mm (No. 100)	8.0	7.6	8	7.6	7.4		-	6	10	
0.075 mm (No. 200)	4.0	4.6	5.3	4.3	4.6		2-10	2.5	5.5	
Binder Content, %	5.60	5.74	5.91	6.1 F	5.60		-	5.2	6.0	
G _{mm}	2.471	2.474	2.473	2.501*	2.471		-	-	-	

F= Outside MassDOT acceptance limit * Significantly different G_{mm} compared to the LTMF.

Mixture Property Test Results

Project #2 (28% RAP)									
						12.5 mm	Lower	Upper	
	LTMF	10/22	06/23	08/23		Superpave	Engineering	Engineering	
						Specification	Limit (LEL)	Limit (UEL)	
19 mm (3/4")	100	100	100	100		100	100	100	
12.5 mm (3/4")	95.0	93.1	97.4	96.8		90-100	89	100	
9.5 mm (3/4")	81.0	78.6	85.5	81.0		90 max	75	87	
4.75 mm (No. 4)	51.0	47.7	53.8	49.9		-	45	57	
2.36 mm (No. 8)	34.0	32.6	33.8	32.7		28-58	29	40	
1.18 mm (No. 16)	26.0	24.2	24.2	23.8		-	23	29	
0.6 mm (No. 30)	19.0	18.6	18.5	18.0		-	17	23	
0.3 mm (No. 50)	14.0	14.2	14.3	13.7		-	11	17	
0.15 mm (No. 100)	8.0	9.2	9.7	9.1		-	6	10	
0.075 mm (No. 200)	4.3	5.6	5.9 F	5.5		2-10	2.8	5.8	
Binder Content, %	5.20	5.26	5.60	5.20		_	4.8	5.6	
G _{mm}	2.473	2.478	2.479	2.479		-	-	-	

F= Outside MassDOT acceptance limit

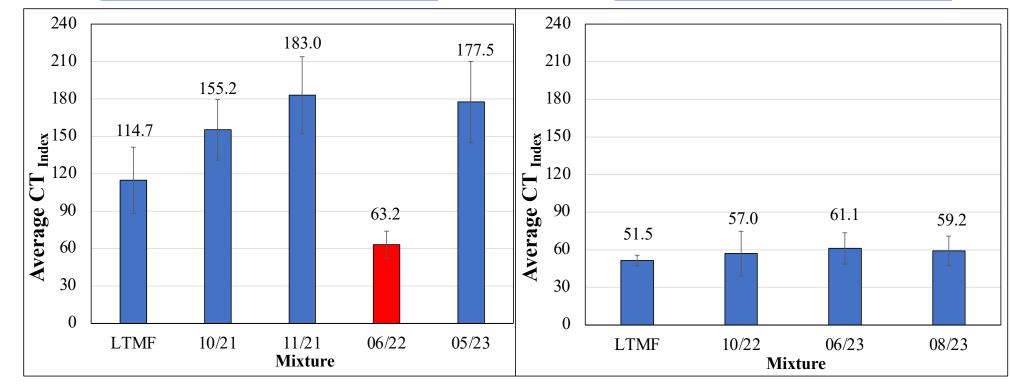

Mixture Performance Evaluation

	Rutting & Moisture Susceptibility	Intermediate Temp Tes	Low Temperature Cracking	
Test	HWTT	I-FIT	IDEAL-CT	TSRST
Specification	AASHTO T 324	AASHTO T 393	ASTM D 8225	AASHTO TP 10-93
Test Temperature	45°C	25°C	25°C	n/a

Mixture Rutting and Moisture Susceptibility Results

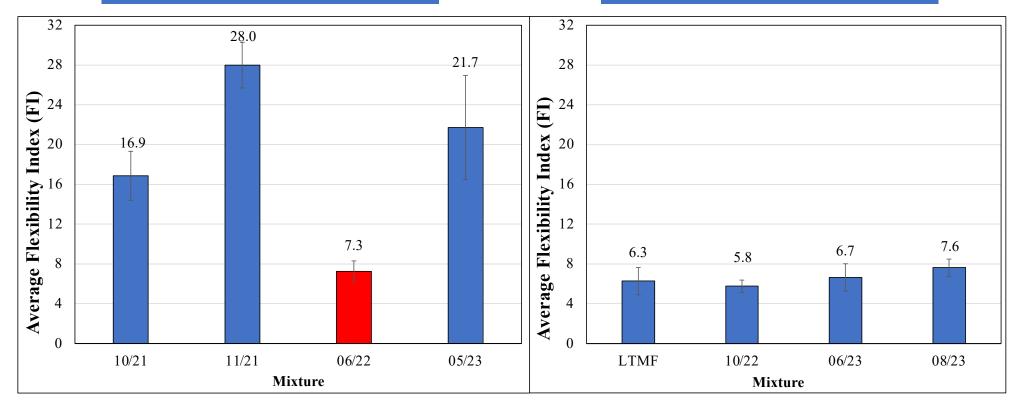
Project#1 (25% RAP)

Project#2 (28% RAP)


• All mixtures met the MassDOT specification criteria. Rutting and moisture damage were not issues for these mixtures.

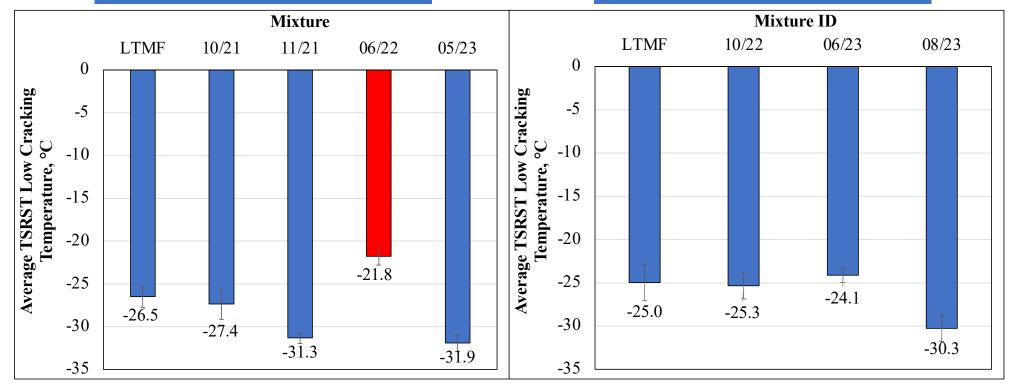
Mixture Intermediate Temperature Cracking Results

Project#1 (25% RAP)


Project#2 (28% RAP)

Mixture Intermediate Temperature Cracking Results

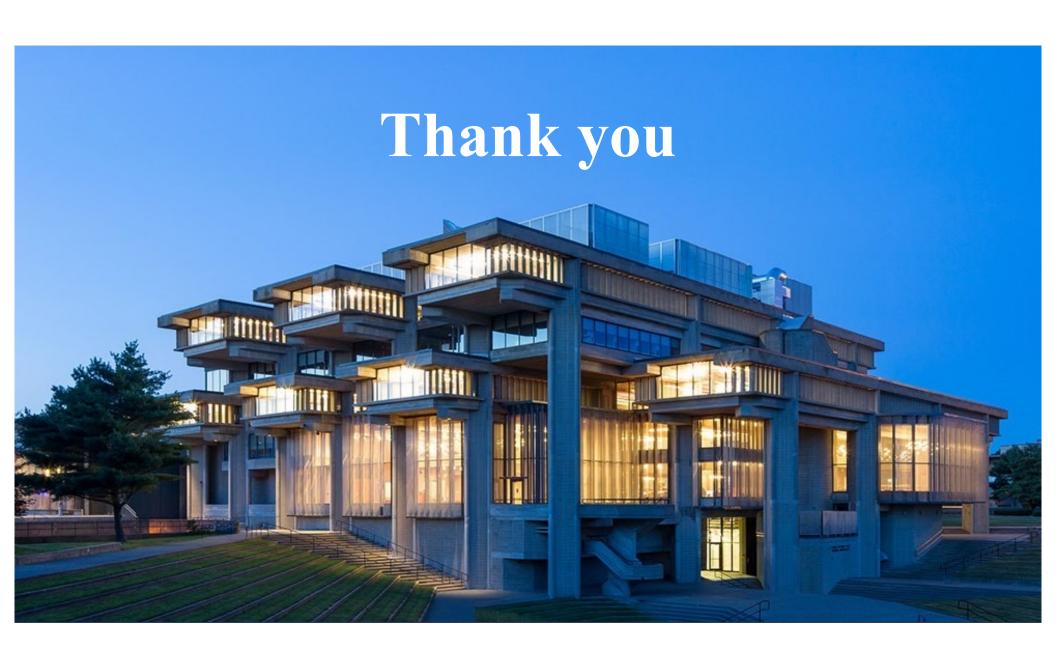
Project#1 (25% RAP)


Project#2 (28% RAP)

Mixture Low-Temperature Cracking Results

Project#1 (25% RAP)

Project#2 (28% RAP)


Conclusions

➤Asphalt mixtures with high RAP content can be produced and provide acceptable balanced performance for rutting, intermediate- and lowtemperature cracking resistance.

➤Material characteristics should be rigorously validated during production to ensure the approved mixture design is maintained.

➤ Testing during production will allow for adjustments to the mixture if the material properties change significantly, thereby ensuring the mixture remains balanced.

