

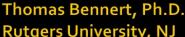
A Producer's Experience with Performance Testing

GREG ROSE - BARRE STONE PRODUCTS, INC.

Barre Stone Products, Inc.

Where did it all start?

Optimized Mix Design for Performance


NORTHEAST ASPHALT USER PRODUCER GROUP (NEAUPG) ANNUAL MEETING BURLINGTON, VERMONT

OCTOBER 2015

SHANE BUCHANAN OLDCASTLE MATERIALS

Performance-Related Mixes and Balanced Mix Design

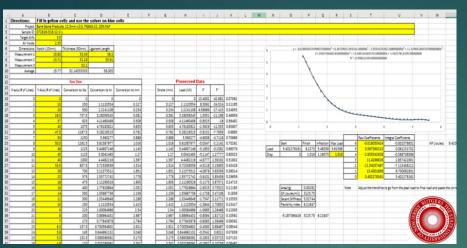
Thomas Bennert, Ph.D. Rutgers University, NJ

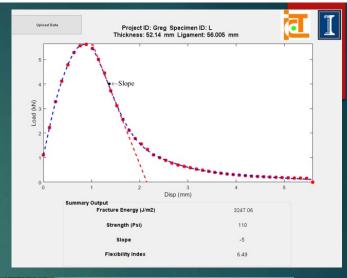
Balanced Mix Design (BMD) Task Force Update FHWA Expert Task Group on Asphalt Mixtures

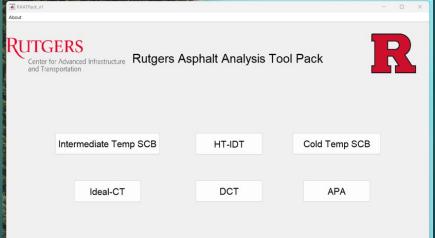
DAVE NEWCOMB

Cantabro Testing

SCB Testing

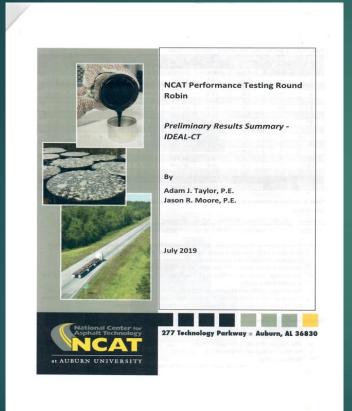


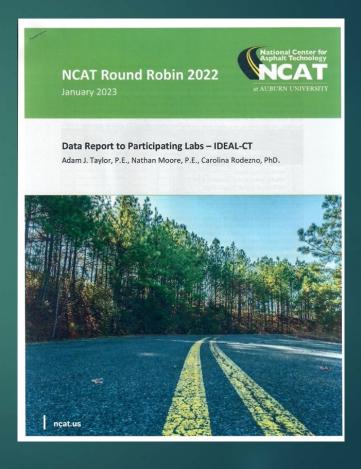




rose ereb	tuden [36]	.02	10 (76)	0.3											
Mixture D	escription	Thickness	Air Voids	Tensile	Displacement (Fracture En	ergy (Gf)		Slo	pe (S)			Gf/		
Mix	Specimen ID	(mm)	(%)	Strength (kPa)	L), mm	Energy (LLD) (Gf) (I/m2)	Average	5	Average	Standard Deviation	cov	Gf/S	Average	Standard Deviation	cov
Hanson	16A	62.1	7.07	969	8.2	14,267		2.01	20.200			7,102			
PEM	17	62.0	7.07	991	8.0	14,794	14,314	1.67	1.91	0.16	8.65	8,843	7,589	894.65	11.79
7/27/22	18	619	6.29	1020	7.7	13,879		2.03				6,821			
Aver	bg¢	62.0	6.81	993	8.0							2			
16.00	_										1		CT In	dex	
			-									(Gi	/S)*(L/	D)*(t/62)	Ų.
14.00	Ī											(Gf/S)*(L/D)	Average	Standard Deviation	cov
12.00												387.8			1001010
												470.2	402.9	49.99	12.41
10.00	- /								Har		100	350.5			
₹ 8.00									7/2	7/22			Gf/S)*(L/D)^2	C)
Force (kN)												(Gf/5)*(L/D)*2	Average	Standard Deviation	cov
6.00												21.11		10040	O AND SECOND
4.00	1											25.00	21.40	2.83	13.25
4.00							-					18.07	_		
2.00	1							-					FST	odex	
0.00		Vi.				- 6	E		-			Gf/Tensile Strength	Average	Standard Deviation	cov
	0.00	2.00	4.00	6.00	8.00		.00 14	4.00	16.00	18.00 20	0.00	14.72			
					Displa	cement (mm)						14.93	14.42	0.58	4.02
												13.61			

Upgrade my Equipment





Verify Methods & Practices

2019 Special Note

Task 2. Number of Specimens (Testing Lab).

The testing laboratory will make the following number of specimens for performance testing:

- a. Overlay Tester 5 specimens
- b. Asphalt Pavement Analyzer (APA) or Hamburg Wheel Tracker 6 specimens
- c. Semi-circular Bend (SCB) 4 specimens
- d. Ideal-CT 3 specimens
- e. High Temperature Indirect Tension 3 specimens
- f. Gradation
- g. Asphalt content using chemical extraction.

Task 3. Number of Specimens (Producer Lab).

The producer will make the following number of specimens for performance testing:

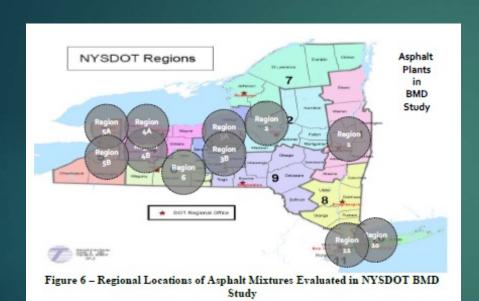
- a. Semi-circular Bend (SCB) 4 specimens
- b. Ideal-CT 3 specimens
- c. High Temperature Indirect Tension 3 specimens

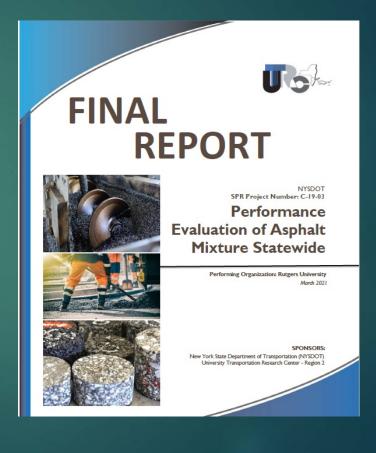
Task 4.

<u>Test Results.</u> The Producer will submit both the testing lab and Produce lab results to the Materials Bureau once the tests are completed. In addition, the Producer shall submit the volumetric results of the mixture during the production for the day selected. The QAF will be 1.00

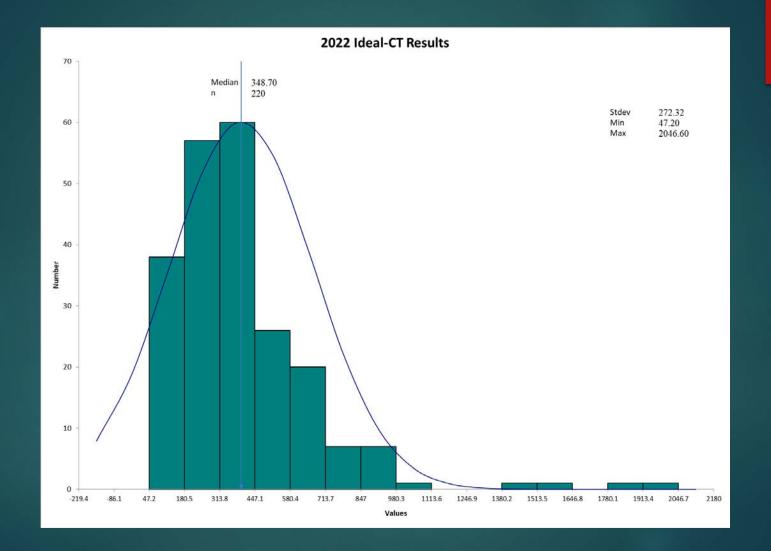
Plant Production	Units	Target	Range	Lot 4A	Rutgers *	Lot 4B
Voids	%	3.16	2.5 - 4.5	4.53		3.69
AC Content	%	6.3	6.1 - 6.5	6.5	6.3	6.3
APA Rutting @ 8,000						
Cycles @ 64°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Rut Depth	mm		4-7	-	4.38	-
Hamburg Rutting at						
20,000 Cycles @ 50°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Rut Depth	mm	< 12.5	n/a	-	10.45	-
High Temperature						
Indirect Tensile Stregth						
(HT-IDT) @ 42°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Voids	%	7.0	6.5 - 7.5	7.0	7.0	6.9
Thickness	mm	95.0	94.0 - 96.0	94.8	95.5	95.0
HT-IDT	PSI		23 - 47	36.0	33.2	36.1
			-			
Overlay Test for Crack						
Resistance @ 25°C	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
# of Cycles to Failure	Cycles		100 - 700	-	1171	-
Semicircular Bend (SCB)	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Voids	%	7.0	6.0 - 8.0	7.1	7.1	7.0
Thickness	mm	50.0	49.0 - 51.0	48.6	49.9	48.8
Ligament	mm			57.6	58.1	57.9
Flexibility Index	FI	> 8.0		8.6	18.8	11.4
Proposed Ideal-CT	Units	Target	Range	Lot 4A	Rutgers	Lot 4B
Voids	%	7.0	6.5 - 7.5	7.1	7.0	7.0
Thickness	mm	62.0	61.0 - 63.0	62.1	62.2	62.0
(Gf/S)*(L/D)			70 - 250	176.0	217.5	178.8

Asphalt Design and Production Task Force (ADP – TF)


- ▶ Tom Kane NYSDOT
- Karl Vogel NYSDOT
- Chris Heller NYSDOT
- Bruce Barkevich NYCMA
- Greg Rose Barre Stone
- Massimo Colombai Dolomite
- Aaron Markham Gernatt
- Rocco Perretta Heidelberg
- ▶ Jared Borelli Callanan
- Kai Qualben Tilcon NY
- Connor Campbell Suit-Kote
- Mike Moore Jr. Cobleskill Stone



Benchmarking NYS Mixes



4 A	В	Е	F	G	Н	l J	K	L	М	N	0	Р	Q	T	U	٧	V	Χ	Υ	Z	AA	AB	AC	AD	AE
1 IDEAL-CT	Date Sampled	Air Voids	CT Index	QCQA	Mix Size	RAP% AC		QC Results	JMF A	Averages		HT-IDT	Date Sampled	Air Voids	IDT Strength	QCQA	Mix Size	RAP%	AC%	QA/G	(C Results	Per E	ay Results	JMF	Averages
2	7/5/2022	6.64	283.6	QA	9.5mm	6.3		376.9333333					7/5/2022	6.70	43.2	QA	9.5mm		6.2	Average	51.5				
3	7/5/2022	7	478.9	QA	9.5mm	6.3	Std Dev	79.9642559					7/5/2022	7.00	52.0	QA	9.5mm		6.2	Std Dev	6.582299497				
4	7/5/2022	7.2	368.3	QA	9.5mm	6.3	COV	21.2%	(QΑ			7/5/2022	7.00	59.3	QA	9.5mm		6.2	COV	12.8%	Average	42.08333333		QA
5	7/5/2022	6.1	408.8	QC	9.5mm	6.3	Average		Average	419.55			7/5/2022	7.00	34.1	QC	9.5mm		6.2	Average	32.66666667	Std Dev	4.03985233	Average	49.16666667
6	7/5/2022	6.8	300.8	QC	9.5mm	6.3	Std Dev	65.90095261	Std Dev	83.30275606			7/5/2022	7.40	33.3	QC	9.5mm		6.2	Std Dev	1.497405163	COV	9%	Std Dev	5.405141585
7	7/5/2022	6.4	250.9	QC	9.5mm	6.3	COV	20.6%	COV	19.9%			7/5/2022	7.20	30.6	QC	9.5mm		6.2	COV	4.6%			COV	11.0%
8	7/8/2022	6.77	539.0	QA	9.5mm	6.	Average	462.1666667	(QC			7/8/2022	6.90	44.0	QA	9.5mm		6.2	Average	46.83333333				QC
9	7/8/2022	6.85	460.5	QA	9.5mm	6.3	Std Dev	62.06493016	Average	300.95			7/8/2022	7.10	48.8	QA	9.5mm		6.2	Std Dev	2.053181813			Average	34.61666667
10	7/8/2022	7.06	387.0	QA	9.5mm	6.	COV	13.4%	Std Dev	63.81396791			7/8/2022	7.30	47.7	QA	9.5mm		6.2	COV	4.4%	Average	41.7	Std Dev	2.476164148
11	7/8/2022	7	246.1	QC	9.5mm	6.3	Average	281.7333333	COV	21.2%			7/8/2022	6.60	36.7	QC	9.5mm		6.2	Average	36.56666667	Std Dev	1.803693788	COV	7.2%
12	7/8/2022	7.1	239.2	QC	9.5mm	6.3	Std Dev	55.34391465					7/8/2022	6.50	34.6	QC	9.5mm		6.2	Std Dev	1.554205764	COV	4%		
13	7/8/2022	7.1	359.9	QC	9.5mm	6.	COV	19.6%					7/8/2022	6.70	38.4	QC	9.5mm		6.2	COV	4.3%				
14	5/12/2022	7.20	303.8	QA	9.5mm	0 6.	Average	240.5					5/12/2022	6.96	45.2	QA	9.5mm	0	6.4	Average	46.06666667				
15	5/12/2022	7.08	291.2	QA	9.5mm	0 6.	Std Dev	80.77412952					5/12/2022	7.36	44.5	QA	9.5mm	0	6.4	Std Dev	1.744196727				
16	5/12/2022	7.16	126.5	QA	9.5mm	0 6.	COV	33.6%					5/12/2022	7.60	48.5	QA	9.5mm	0	6.4	COV	3.8%	Average	47.03949622		
17	5/12/2022	7.30	417.1	QC	9.5mm	0 6.	Average	378.6666667					5/12/2022	7.60	42.4	QC	9.5mm	0	6.4	Average	48.01232578	Std Dev	2.898602511		
18	5/12/2022	6.60	384.7	QC	9.5mm	0 6.	Std Dev	34.11161418					5/12/2022	7.30	49.9	QC	9.5mm	0	6.4	Std Dev	4.053008295	COV	6%		
19	5/12/2022	7.00	334.2	QC	9.5mm	0 6.	COV	9.0%					5/12/2022	7.30	51.7	QC	9.5mm	0	6.4	COV	8.4%				
20	5/17/2022	7.00	382.6	QA	9.5mm	0 6.	Average	266.0333333					5/17/2022	7.05	32.5	QA	9.5mm	0	6.4	Average	38.63333333				
21	5/17/2022	6.6	238.0	QA	9.5mm	0 6.	Std Dev	86.04612458					5/17/2022	6.49	40.7	QA	9.5mm	0	6.4	Std Dev	4.413111777				
22	5/17/2022	7.4	177.5	QA	9.5mm	0 6.	COV	32.3%				1	5/17/2022	6.53	42.7	QA	9.5mm	0	6.4	COV	11.4%	Average	39.64128831		
23	5/17/2022	7	479.7	QC	9.5mm	0 6.	Average	421.1	(QΑ			5/17/2022	7.20	35.3	QC	9.5mm	0	6.4	Average	40.64924329	Std Dev	5.511350006		
24	5/17/2022	7.5	381.0	QC	9.5mm	0 6.	Std Dev	42.36437182	Average	335.7916667			5/17/2022	7.20	36.7	QC	9.5mm	0	6.4	Std Dev	6.609588236	COV	14%		
25	5/17/2022	7.3	402.6	QC	9.5mm	0 6.	COV	10.1%	Std Dev	148.3177869			5/17/2022	7.20	50.0	QC	9.5mm	0	6.4	COV	16.3%				
26	5/23/2022	7.2	435.8	QA	9.5mm	0 6.	Average	364.5333333	COV	44.2%			5/23/2022	7.40		QC	9.5mm	0	6.4	Average	32.99125074				
27	5/23/2022	7.14	332.2	QA	9.5mm	0 6.	Std Dev	50.46512547	(QC		1	5/23/2022	7.40	33.2	QC	9.5mm	0	6.4	Std Dev	2.604772605				
28	5/23/2022	6.9	325.6	QA	9.5mm	0 6.	COV	13.8%	Average	365.8666667		1	5/23/2022	7.20	36.1	QC	9.5mm	0	6.4	COV	7.9%	Average	35.8289587		
29	5/23/2022	7.4	261.2	QC	9.5mm	0 6.	Average	255.7333333	Std Dev	65.19762436			5/23/2022	7.43	34.8	QA	9.5mm	0	6.4	Average	38.66666667	Std Dev	2.691230746		QA
30	5/23/2022	7.4	234.3	QC	9.5mm	0 6.	Std Dev		COV	17.8%			5/23/2022	7.35	40.0	QA	9.5mm	0	6.4	Std Dev	2.777688887	COV	8%	Average	39.3952381
31	5/23/2022	7.2	271.7	QC	9.5mm	0 6.	COV	6.2%					5/23/2022	7.39	41.2	QA	9.5mm	0	6.4	COV	7.2%			Std Dev	5.764710061
32	5/26/2022	6.5	210.1	QA	9.5mm	0 6.	Average	498.0666667					5/26/2022	6.70	45.2	QA	9.5mm	0	6.4	Average	34.83333333			COV	14.6%
33	5/26/2022	7.46	623.8	QA	9.5mm	0 6.	Std Dev	204.1676816					5/26/2022	7.06	27.8	QA	9.5mm	0	6.4	Std Dev	7.484354051				QC
34	5/26/2022	7.1	660.3	QA	9.5mm	0 6.	COV	41.0%				1	5/26/2022	7.02	31.5	QA	9.5mm	0	6.4	COV	21.5%	Average	34.2676345	Average	37.67306892
35	5/26/2022	6.8	394.4	QC	9.5mm	0 6.	Average	380.3666667				1	5/26/2022	7.80	30.7	QC	9.5mm	0	6.4	Average	33,70193566	Std Dev	4.840932954	Std Dev	7.060465013
36	5/26/2022	6.8	409.9	QC	9.5mm	0 6.	Std Dev	31.44946564				1	5/26/2022	7.60	35.9	QC	9.5mm	0	6.4	Std Dev	2.197511858	COV	14%	COV	18.7%
37	5/26/2022	6.6	336.8	QC	9.5mm	0 6.	COV	8.3%				1	5/26/2022	7.80	34.5	QC	9.5mm	0	6.4	COV	6.5%				
38	6/3/2022	7.19	255.7	QA	9.5mm	0 6.	Average	309.825				1	6/3/2022	6.95	44.0	QA	9.5mm	0	6.4	Average	40.66666667				
39	6/3/2022	7.15	434.2	QA	9.5mm	0 6.	Std Dev	113,4890606				1	6/3/2022	7.03	39.1	QA	9.5mm	0	6.4		2.358436394				
40	6/3/2022	6.75	398.5	QA	9.5mm	0 6.	COV	37%				1	6/3/2022	6.87	38.9	QA	9.5mm	0	6.4	COV	6%	Average	36.83862789		
41	6/3/2022	6.5	150.9	QA	9.5mm	0 6.						1	6/3/2022	7.50	31.2	QC	9.5mm	0	6.4	Average			1.943664769		
			,	7												7-	3333311					,			

2024 VPP NYSDOT Specific Projects

2.7 Asphalt Mixture Evaluation Using Performance Testing

This note shall apply to the sites listed below:

Project 4V2311 - Route 33, Genesee County

Project 4V2331 - Route 33A, Monroe County

Project 4V2332 - Route 250, Monroe County

Project 4V2341 - Route 21, Wayne and Ontario Counties

Project 4V2351 - Route 31A, Orleans County

Project 4V2361 - Route 14, Wayne County

Project 4V2371 – Route 39, Wyoming County

Project 5V2432 - Route 277, Erie County

Project 5V2443 - Route 62, Erie County

Project 5V2444 - Route 187, Erie County

Project 5V2452 - Route 324, Erie County

Project 7V2411 - Route 9, Clinton County

Project 7V2412 - Route 9B, Clinton County

Project 7V2413 - Route 22, Clinton County

Project 7V2432 – Route 37, Jefferson County

Project 7V2441 – Route 812, Lewis County

Project 7V2452 – Route 37, St. Lawrence County

Project 7V2456 – Route 420, St. Lawrence County

Project 7V2462 – Route 126, Jefferson County

Project 7V2664 - Route 37, Jefferson County

Project 9HW411 – Route 26, Broome County

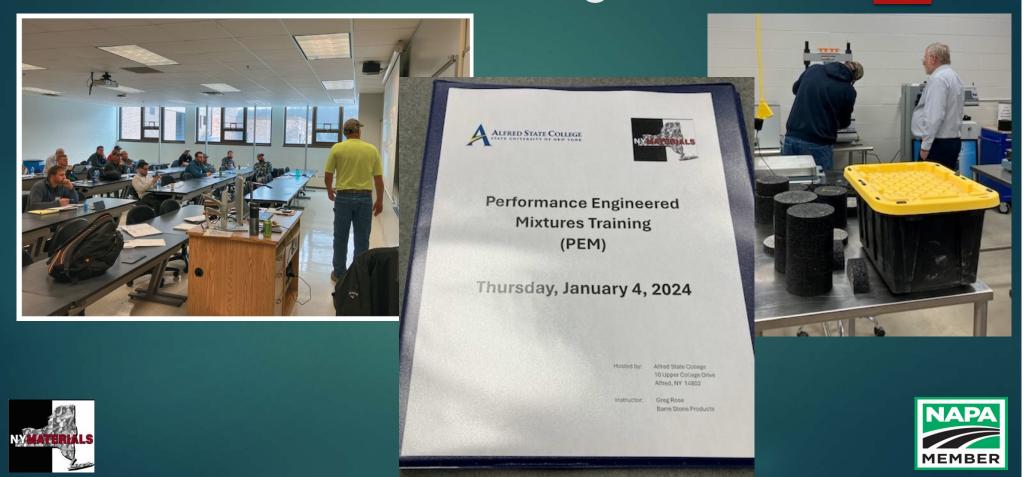
Project 9HW421 - Route 206, Chenango County

Project 9HW441 - Route 268, Delaware County

Project 9HW451 – Route 166, Otsego County

Project 9HW461 – Route 28, Delaware County

Project 9HW471 - Route 52, Sullivan County


Project 9V2461 - Route 10, Schoharie County

NYCMA PEM Training Class

PERFORMANCE ENGINEERED MIXTURES (PEM) EVALUATION USING PERFORMANCE TESTING

Description

This note covers the requirements of Performance Engineered mixes (PEM) for Asphalt Top Course mixtures. The requirements are mixture design, verification, and production under a performance testing process. All provisions of Section 401 Asphalt Production of the NYS Standard Specifications apply except as modified below.

Mixture Design Process

Asphalt Mixtures shall be designed to meet the requirements of New York State Materials Method 5.16, Asphalt Mixture Design and Mixture Verification Procedures, except as modified. Mixture should meet or exceed the performance testing requirements specified in Table 1, unless waived by the Regional Materials Engineer.

Table 1 - Performance Testing Criteria

	Test Methods	Criteria	Min. Design Value	Max. COV
--	--------------	----------	-------------------	----------

2. Regional Materials Lab - The RML will do the following:

- a. Test the Producer fabricated second set samples to determine if they meet the performance criteria referenced in Table 1.
- Additional Cross-Lab Testing: The RME may elect to fabricate additional samples for cross-lab testing by the Producer, if necessary.

Mixture Design Process

Asphalt mixtures shall be designed to meet the requirements of New York State Materials Method 5.16, Asphalt Mixture Design and Mixture Verification Procedures except as modified. Mixture should meet or exceed the performance testing requirements specified in Table 1, unless waived by the Regional Materials Engineer (RME).

Table 1	Table 1 – Performance Testing Criteria							
Test Methods	Criteria	Min. Design Value	Max. COV					
AASHTO T 393-21	Flexibility Index	8	≤40					
Flexibility Index Test	46554							
ASTM D6931-17	IDT Strength	30 psi	≤25					
Indirect Tensile Strength Test	0-000000000000000000000000000000000000		000 880590014					
ASTM D8225-19	CT Index	135	≤25					
Determination of CT Index								

Designs may use an air void content between 2% and 5%.

In no case shall the job mix tolerance fall outside the Control Points of the control sieves.

Att	the Plant	High Temperature IDT	IDEAL CT index	SCB Flexibility Index	
Test Method		ASTM D6931-17 NCHRP 9-33 Report	ASTM D8225-19	AASHTO T 393-21	
No. o	of Samples	3	3	3	
Load Ra	ate (mm/min)	50±5	50±2	50±2	
Hei	ght (mm)	62±1 ¹	<= 19 mm NAS = 62±1 >=25 mm NAS = 95±1	50±1	
Notch	Width (mm)	NA	NA	<2.25	
	Lab mixed	2 hours loose mix volumetric Conditioning at Compaction Temperature	4 hours loose mix conditioning at Compaction Temperature	4 hours loose mix conditioning at Compaction Temperature.	
Aging	Plant mixed	Reheat loose mix to Compaction Temperature and Compact Specimens or Reheat loose mix to Compaction Temperature	Reheat loose mix to Compaction Temperature and Compact Specimens or Reheat loose mix to Compaction Temperature	Reheat loose mix to Compaction Temperature and Compact Specimens or Reheat loose mix to Compaction Temperature	
Compaction		V Grade = 132° C $\pm 3^{\circ}$ C	V Grade = 132 °C ± 3 °C	V Grade = 132° C $\pm 3^{\circ}$ C	
	erature, °C	E Grade = 146° C $\pm 3^{\circ}$ C	E Grade = 146° C $\pm 3^{\circ}$ C	E Grade = 146° C $\pm 3^{\circ}$ C	
	Voids, %	7 ± 1	7 ± 0.5	7 ± 1	
Test Ter	mperature, °C	44°C ± 1.0	$25^{\circ}\text{C} \pm 1.0$	25°C ± 1.0	
Water Bath Conditioning		44°C for 2 hrs \pm 10 min.	25°C for 2 hrs \pm 10 min.	5°C for 2 hrs ± 10 mir	

¹ Modified height from ASTM D6931-17

Plant Test Producer Department							
Plant Test Property	Test Method	Producer Testing Frequency ¹	Department Testing Frequency ²				
PG Binder Content	Automation, Ignition Oven (NY 400-13C), or AASHTO T 164 Method A or B	Every Sublot	Every Lot				
Aggregate Gradation	AASHTO T27	Every Sublot	Every 3 Lots				
Air Voids	MM 5.16, AASHTO T269	Every 2 Lots	Every 3 Lots				
Indirect Tensile Strength	ASTM D6931-17	Every 2 Lots	Every 3 Lots				
Determination of CT Index	ASTM D8225-19	Every 2 Lots	Every 3 Lots				

- All sampling at the plant
 All sampling at the paver

Mixture Production

Asphalt Mixture requirements are as follows:

Table 4 - Mixture Gradation, Absolute Difference Value									
Limits		Sieve Sizes							
(Test Value – JMF Value)	#50 and Larger (300 μm and Larger)	#100 (150 μm)	#200 (75 μm)						
Production	0.0 - 5.0	0.0 - 4.0	0.0 - 2.0						
Evaluation	5.0 - 8.0	4.0 - 6.0	2.0 - 4.0						
Action	>8.0	>6.0	>4.0						

Table 5 - Mixture Performance Limits								
PEM Limits	IDEAL CT	HT-IDT (psi)						
Production	≥ 135.0	≥ 30.0						
Evaluation	108.0 - 134.9	24.0 - 29.9						
Action	< 108.0	< 24.0						

Table 6 – Air Void Limits							
Limits	Air Voids						
Production	2%-5%						
Evaluation	<2% or >5%						

Project 4V2351 Rt. 31A VPP Project

- ▶ 2.0 Miles from the BSP Asphalt Plant
- ▶ 7.7 mile overlay project
 - ▶ 4,600 tons of Shim (Scratch), PG64S-22, Warm-Mix
 - ▶ 18,650 tons of 12.5 F2 Top, PG64V-22, Warm-Mix
- Performance Engineered Mixture Evaluation using Performance Testing
- ▶ 70 Series Compaction (peak the gauge)

Mix Design Verification

DESIGN	Spec	23 Project	Trial #1	Trial #2	Trial #6	DOT Verification #1	DOT Verification #2
Mixed		Plant	Plant	Plant	Lab	Lab	Lab
Ideal-CT	≥ 135.0	171.3	134.8	164.0	165.6	190.1	213.0
COV	≤ 25.0	6.4	4.8	35.2	16.0	47.5	21.0
HT-IDT	≥ 30.0	-	35.3	27.0	44.1	47.7	-
COV	≤ 25.0	-	6.0	18.3	7.3	4.9	-
1.5%	>00	<i>C</i> 1	E O		7.2	4.4	
I-Fit	≥ 8.0	6.1	5.8	-	7.2	4.4	-
COV	≤ 40.0	25.8	13.6	-	15.8	18.4	-

NCAT Trial Weight Estimating Spreadsheet

Mix Gmm: Specimen Height (mm): Target Air Voids (%) Passing #8 Sieve (%)

CF

Estimated CF User Input CF 1.037

Estimated Weight (g): 2,448 Rounded Weight (g): 2,450

> Input Result

Questions? Please contact: Nathan Moore - ndm0005@auburn.edu Adam Taylor - tayloa3@auburn.edu

	Typical Values	
Test	Specimen Height (mm)	Target Air Voids (%)
HB/IDEAL	62	7.0
APA	75	7.0
TSR	95	7.0
OT/IDT	125	7.5 - 8.0
I-FIT/DCT	160	7.5 - 8.0

Tivorago clarang or varaoo		
Height (mm)	Average CF	
62	1.036	
75	National Center for	
95	Asphalt Technology	
125	NCAT	
160	at AURURN UNIVERSITY	

Average Starting CF Values

Calculate Volume CF from G_{mb}

at AUBURN UNIVERSITY
From T166 (Bulk) Test

Dry Specimen Mass (g): 2461.5 Underwater Mass (g): 1409.5

SSD Mass (g): 2467.9

Specimen Diameter (mm): 150
Specimen Height (mm): 62

True G_{mb} : 2.326 Cylinder G_{mb} : 2.247

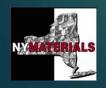
Mix Specific CF: 1.035

Disclaimer:

The Correction Factor (CF) is specific to each unique mix type, sample height, and target air void content

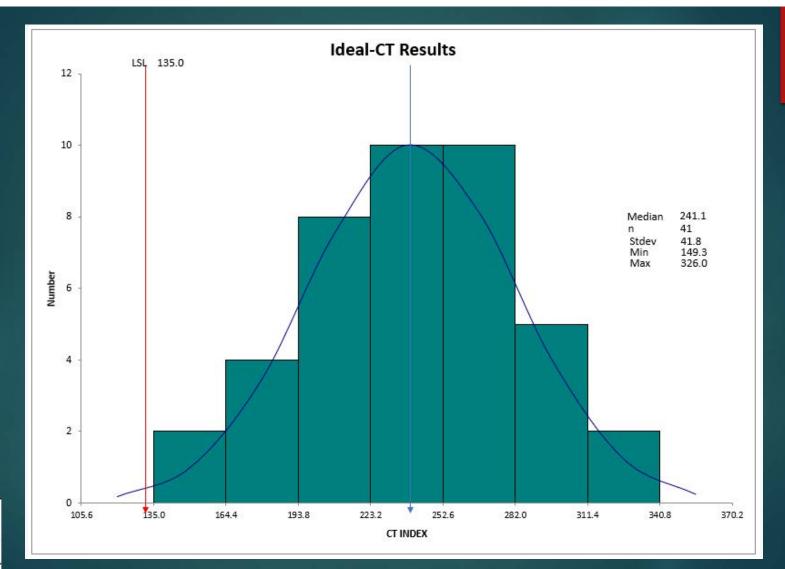
Gradation Results

Sieve	Target	Production	BSP Average	DOT Average
#4	57	± 5.0	56.3	57.4
#8	39	± 5.0	39.5	38.1
#50	9	± 5.0	9.4	9.5
#100	6	± 4.0	5.9	5.9
#200	3	± 2.0	3.1	3.0

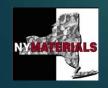


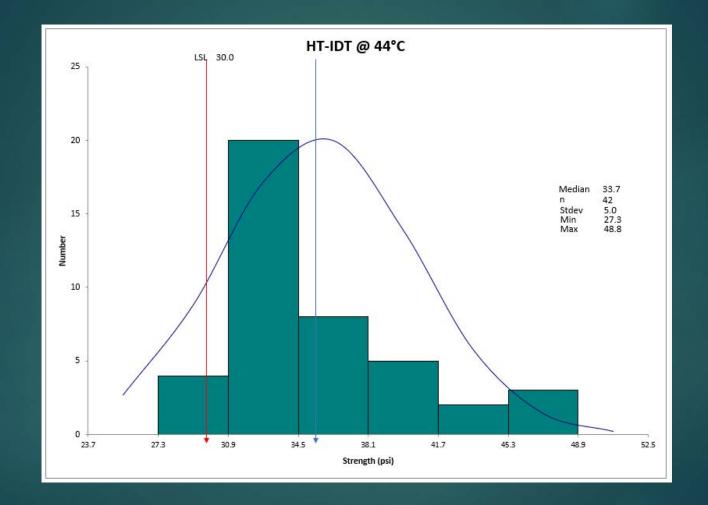
Volumetric Results

	Minimum	Target Air Voids	Maximum
Production	2.0	3.5	5.0
BSP	2.00	2.52	3.98
DOT	1.99	3.28	4.76


Ideal-CT Results

Ideal-CT	Minimum	Average	Maximum
Production		≥ 135.0	
BSP	177.3	253.3	326.0
DOT	149.3	207.9	291.5




HT-IDT Results

HT-IDT	Minimum	Average	Maximum
Production		≥ 30.0	
BSP	27.3	33.0	38.5
DOT	32.0	41.0	48.8

