

Balanced Mix Design (BMD)-Challenges & Opportunities

Insights from Regional Peer-to-Peer Exchanges

Derek Nener-Plante

Principal, DNP Infrastructure LLC

Disclaimer

This material is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange under cooperative agreement No. 693JJ32350026. The U.S. Government assumes no liability for the use of the information contained in this document.

Except for any statutes or regulations cited, the contents of this presentation do not have the force and effect of law and are not meant to bind the public in any way. This presentation is intended only to provide information to the public regarding existing requirements under the law or agency policies. While this document contains nonbinding technical information, you must comply with the applicable statutes and regulations.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this material only because they are considered essential to the objective of the material. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.

All AASHTO & ASTM standards mentioned in this presentation content are private, voluntary standards and compliance with them are not required under Federal law.

Acknowledgment

• The original design of this presentation is credited to **Tom Harman**, Senior Research Engineer at NCAT—any brilliance you see is likely his, and any confusion... well, that's probably on us.

Visual Disclaimer:

Visuals in this presentation were created with great enthusiasm and questionable artistic skill. If they make you laugh, that was intentional. If they make you squint, that was also intentional—just not by design.

Our Visit Today

Where

Market Motivators

Why

The Transition to BMD

What

Key Challenges

Now

Opportunities and Actionable Steps

Thoughts

Conversation

TECH BRIEF WRSC-TB-25-0415

AUTHORS

Elie Y. Hajj (ORCID: 0000-0001-8568-6360), University of Nevada, Reno

Timothy B. Aschenbrener (ORCID: 0000-0001-7253-5504), and Derek Nener-Plante (ORCID: 0000-0001-7642-326X), Federal Highway Administration

Fan Yin (ORCID 0000-0003-4238-9387), and Thomas P. Harman (ORCID: 0009-0000-3741-8417), National Center for Asphalt Technology

DISCLAIMER

This document is disseminated under the sponsorship of the U.S. Department of Transportation (USDOT) in the interest of information exchange under the cooperative agreement No. 693JJ32350026. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this technical brief only because they are considered essential to the objective of the document. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.

All AASHTO and ASTM standards mentioned in this document are nongovernmental, voluntary standards and are not required under Federal law.

APRIL 2025

Balanced Mix Design of Asphalt Mixtures: Challenges & Opportunities

This Technical Brief summarizes key challenges State Departments of Transportation (DOTs) face in adopting Balanced Mix Design (BMD) that are categorized into three focus areas: management (M), technical (T), or overlapping technical-managerial (TM). It also highlights associated opportunities and actionable steps to support effective BMD implementation.

Introduction

As part of the Federal Highway Administration (FHWA) Development and Deployment of Innovative Asphalt Pavement Technologies program, six regional peer-to-peer exchanges were conducted (Figure 1).⁽¹⁻⁶⁾ These exchanges facilitated discussions on implementation challenges, emerging themes, and key takeaways related to BMD. The peer-to-peer exchanges covered Southeast, North Central, Northeast, Rocky Mountain West, Midwest, and Mid-Atlantic regions. In addition to these efforts, separate virtual exchanges with Mega-States were held approximately every six months to address unique challenges and share progress specific to larger state agencies. Key objectives included:

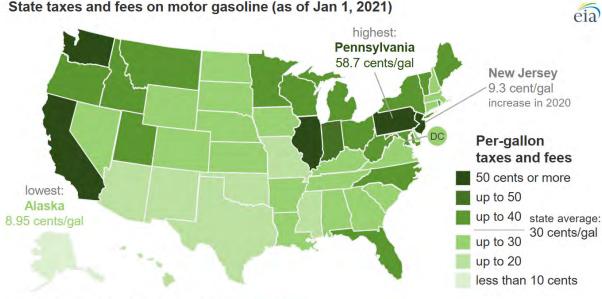
- Providing information and effective practices for State DOTs starting or considering the transition to BMD.
- Sharing lessons learned from State DOTs that have pioneered BMD implementation.
- Discussing operational changes and challenges associated with BMD implementation.

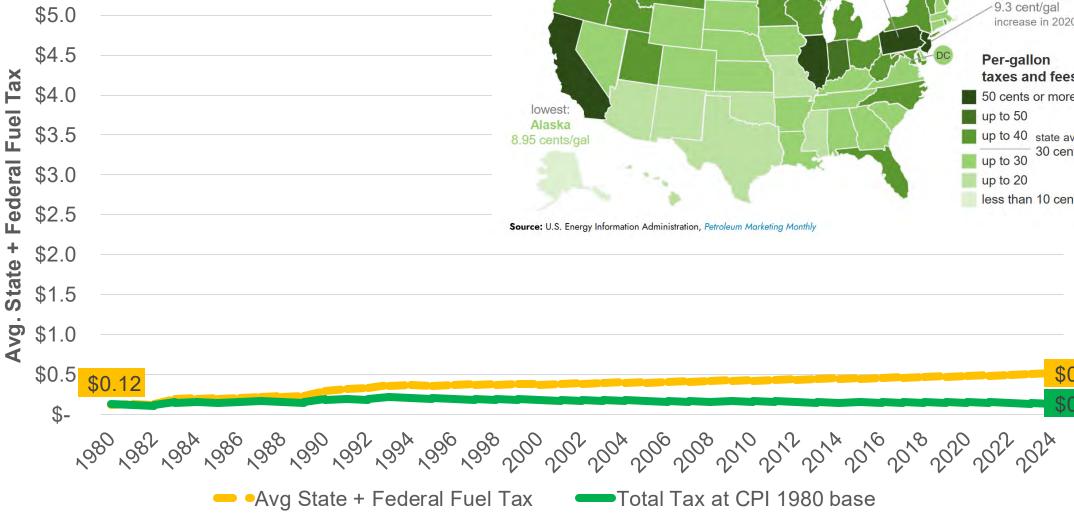
Figure 1. U.S. map of BMD peer-to-peer exchange participants.

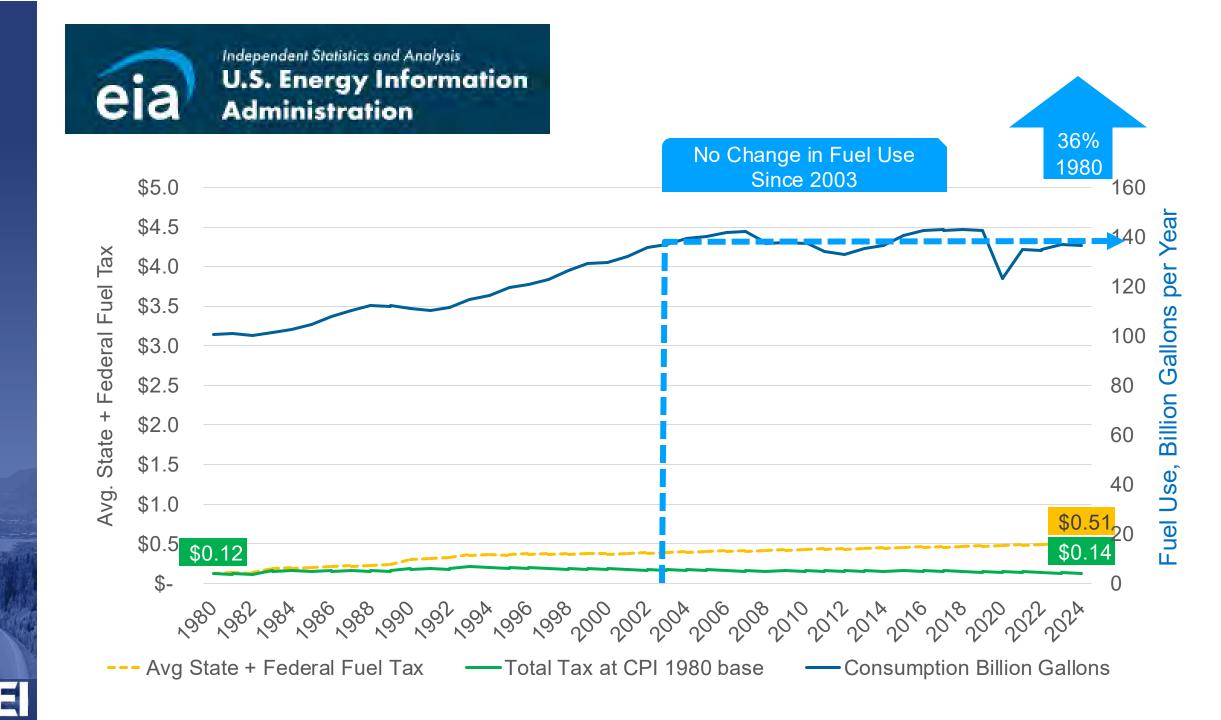
Page 1 of 11

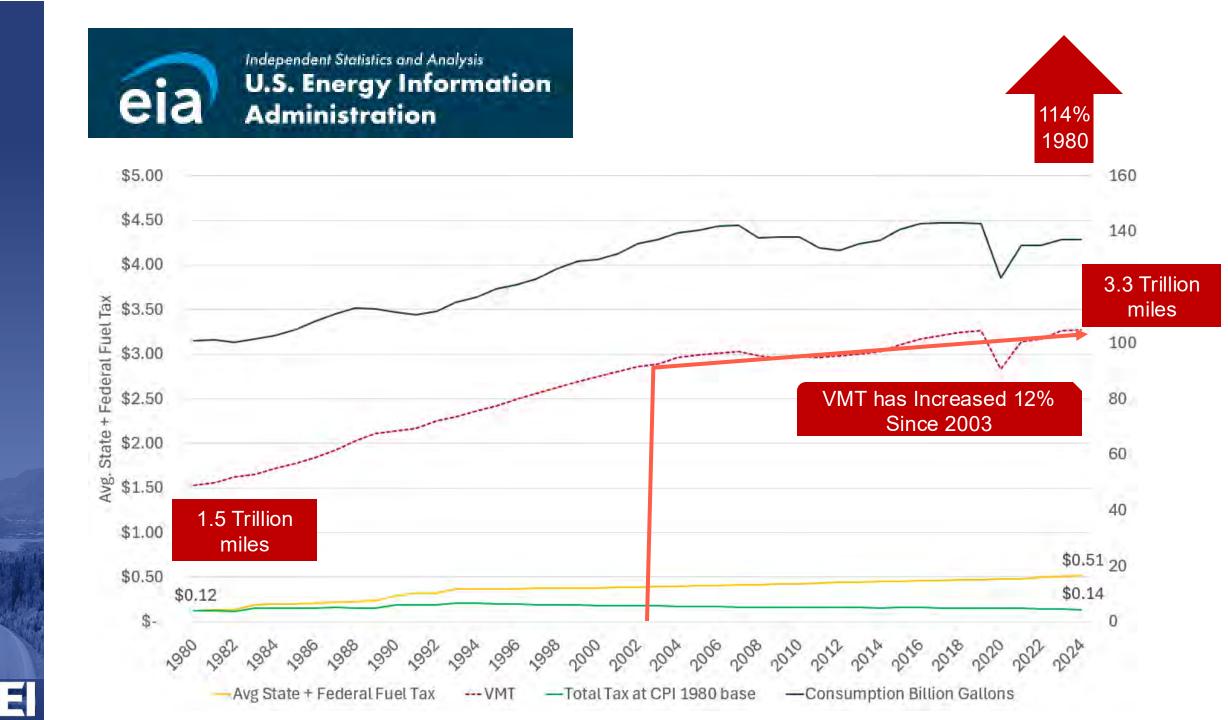
Why is the performance of asphalt pavements important?

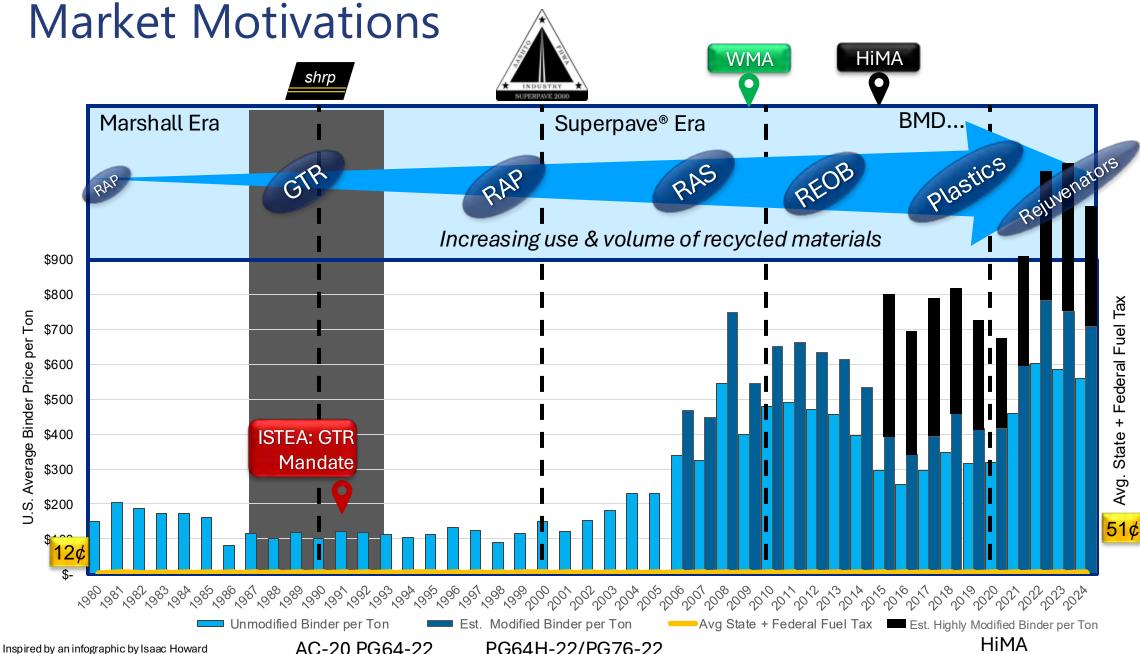
- Our Roadways are a major asset in terms of replacement cost.
- Pavements are the biggest part of construction spending in the Federal-Aid system:
 - ~60%+ of all federal-aid
 - \$30+ billion in 2024

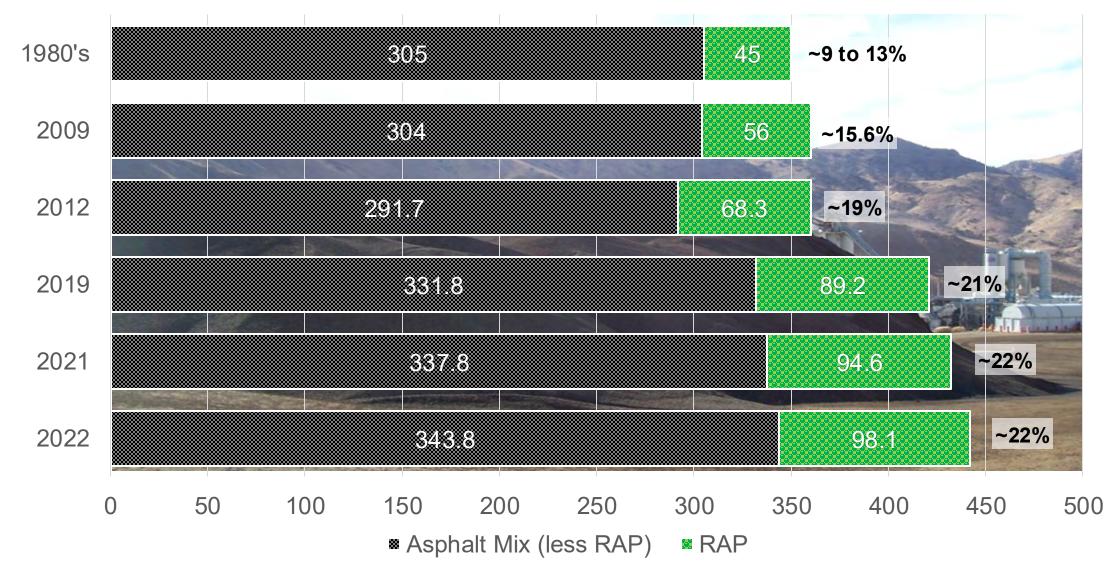

Source: FHWA Memo HICP-50 5/20/2025 Methodology for Determining Pavement Costs


Image: Grok


State gasoline taxes average about 30 cents per gallon







Reimagined by Tom Harman (NCAT)

Market Trends – RAP (million tons)

In three words or less, describe why your State is moving to BMD?

38 responses

less prescriptive specs

effective simple straighf rutting and cracking improved performance dura

check a box improve qu

improve quality follow the pack

increase performance longer lasting pavements

push to do so less cracking

utilize more rap

push to do so le: mproved quality to better quality

quality 💆

volumetrics not working

improved quality to better quality better performing pavemen

innovation ≗

durability sustainability

improve mixes bottor

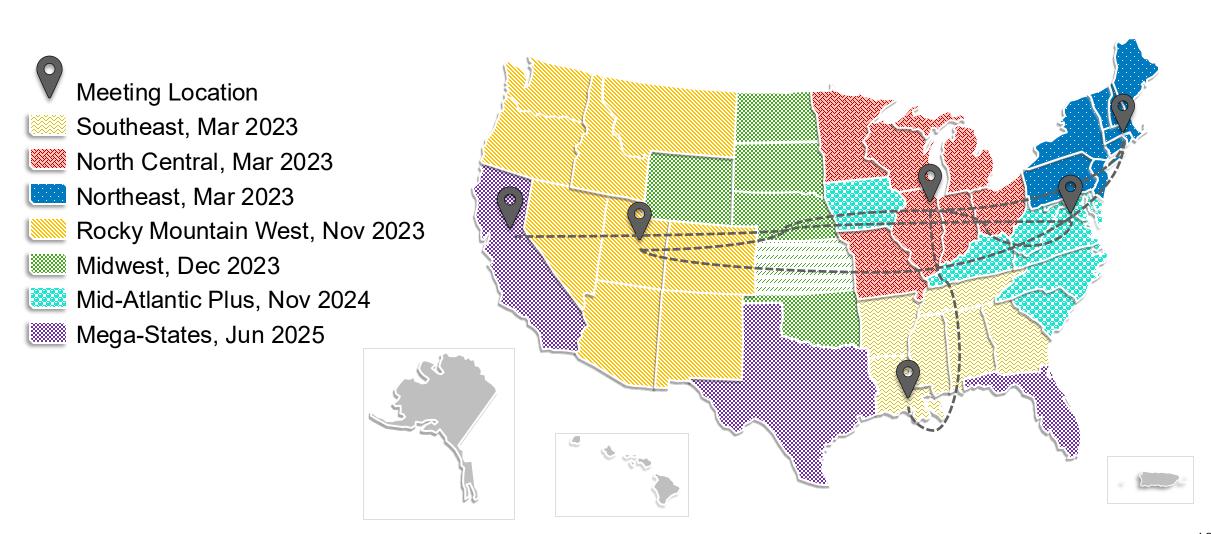
better performance

cost effective mixes

improve

cost reduction

roadway longevity


better performing mixes

baseline data field test improved pavement perform premature failed pavement more applicable testing measurable better options

BMD Peer-to-Peer Exchange Participants

What is the Primary Motivation for State DOTs Moving to BMD?

- A. Greater Flexibility in Material Selection
- B. Volumetrics Do Not Always Yield Optimal Performance
- C. Support Responsible Use of Recycled Materials
- D. Greater Opportunity for Innovation
- E. A Combination of Motivators

Performance Challenges & Solutions

What are Your Common Performance Challenges?

Challenges

Solutions

Block Crack

Pvt Preservation

Thermal Cracking

Testing

Cracking

Modifiers/Additives

Rutting

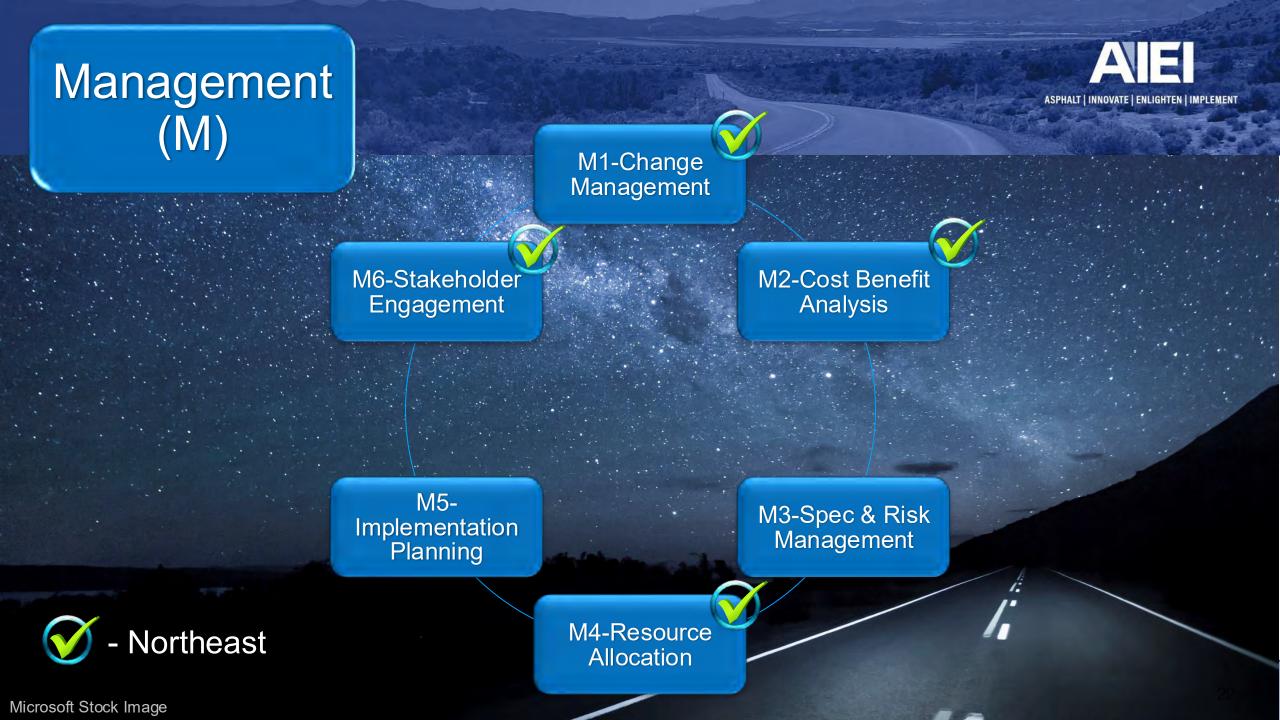
Mix Design

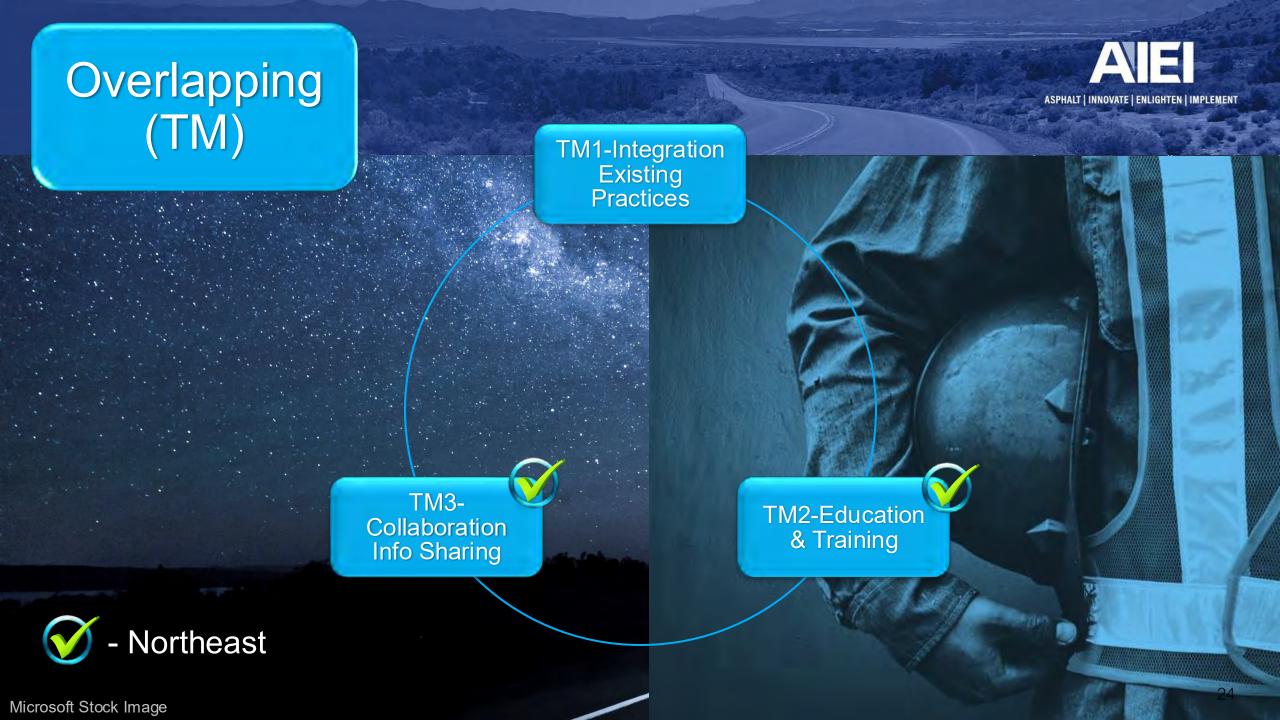
Stripping

Spec.'s

Raveling

Pvt Design


Key Challenges


Management (M)

Technical (T)

Overlapping (TM)

M1-Change Management

Resistance to replacing traditional specifications with BMD due to unclear goals and priorities.

Opportunity

Alignment of BMD with performance goals through clear communication and understanding across various stakeholders.

ACTION

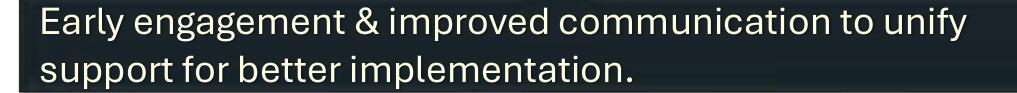
- Identify Champions
- Document and share BMD goals and scope.
- Emphasize eliminating poor-performing mixes.
- Align with State internal priorities.

M4-Resource Allocation

- Phase investment plans.
- Find and develop a qualified workforce.
- Assess equipment & staffing needs.
- Secure funding.

Resource planning to justify investments & support sustainable BMD adoption.

Limited funding, personnel, or equipment for implementation.

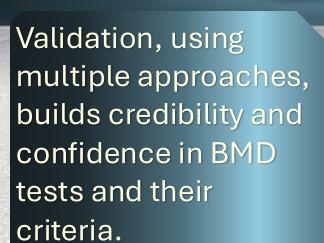


M6-Stakeholder Engagement

- Establish an agency industry task force.
- Organize stakeholder forums, feedback loops, & workshops.
- Tailor outreach to small & large contractors, highlighting mutual benefits.

Uneven buy-in across stakeholders.

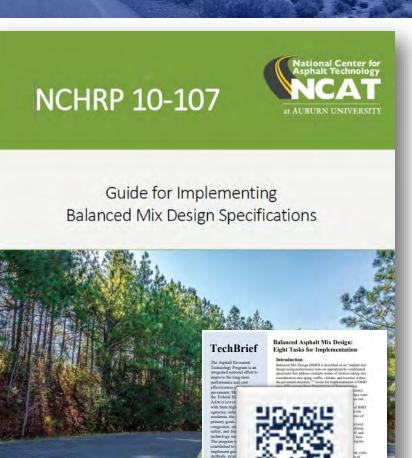
Communication: Got Taskforce?


T1-BMD Test Validation

Lack of a standard validation framework and timely data collection; need for linking laboratory BMD test results with field performance.

Opportunity

- Create a standardized test validation framework.
- Conduct validation
 experiments & leverage peer
 knowledge on validation
 practices
- Monitor in-service performance of asphalt mixtures & refine BMD test criteria.
- Collect & store field samples
 for future testing



8 Major Tasks for BMD Implementation...

• 3.4 Relationship Confirmation and Criteria Development (60 months)

ncat.us

CAPRI Guidance for Open-Road Field Validation Sections

- Advantages, Disadvantages, and Limitations
 - Open-Road
 - Closed Test Track
 - Accelerated Pavement Testing
 - Network-level PMS
- Types of Distresses
- Mixtures and Materials
- Test Sections (Number/Length)
- Geometry to Avoid
- Sampling, Conditioning, and Testing
- Performance Monitoring
- Forensic Investigation
- Data Analysis

Guidelines and Recommendations for Field Validation of Test Criteria for Balanced Mixture Design (BMD) Implementation

Open Road BMD Validation Sections (CAPRI Style)

2024

Preliminary Benchmarking

Focus: Surface Mixes

6 Sections

Goal: Validating Test Criteria

2026

Additional Validation Study

Transportation

2024

Preliminary Benchmarking

Focus: Surface Mixes

6 Sections

Goal: Validating Test Criteria

WisDOT

2022

Preliminary Benchmarking

Focus:

2 Virgina Mixes

High-RAP

3 10-15% RAP

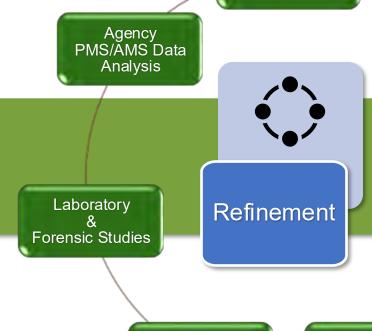
6 Sections

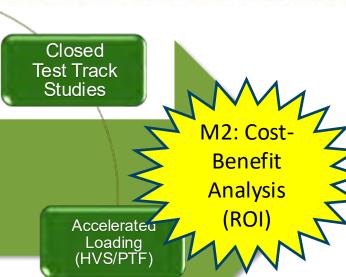
Goal: Validating Test Criteria

2025

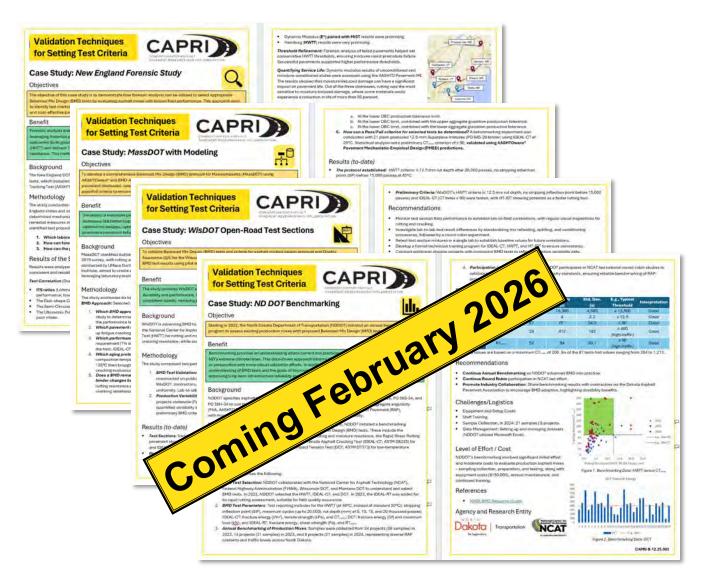
Beyond the Guide

Beyond the Guide




ation




Open-Road Validation Sections

LTPP Materials Reference Library Studies Mechanistic Modeling & Lab Testing

Validation Techniques & Case Studies

Documented Benefits of BMD

The Illinois Department (IDOT) implemented the Track Test (HWTT) in 20: rutting resistance of hot mi mixtures both during mix start of production.(2) Price tensile strength (ITS) and te (TSR) had been used fo evaluate the moisture re Key Takeaways mixtures. Recognizing complementary test to resistance, a research proj 2013 at the Illinois Center (ICT) at the University of I led to three research stud

an additional project to idea aging protocol for I-FIT (IC The ICT R27-161 study i

develop the Illinois Flexibil

FIT) (ICT R27-128), a

laboratory test properties (

compare early field

The combined dataset revealed a nonlinear inverse relationship between \(\Delta CRS \) and production FL indicating higher production FI values generally corresponded with lower rates of CRS deterioration, and thus better pavement

Data from these HMA overlay projects demonstrate that cracking resistance, as determined by the I-FIT FI, has a nonlinear inverse relationship with the average change in pavement performance. As a result, higher FI values were generally associated with reduced transverse cracking and slower pavement deterioration. IDOT plans to continue monitoring these projects to further validate and refine the specifications.

Increasing FI from 5 to 20 cuts pavement deterioration rates for IDOT by up to 27 percent.

advertised with the Superpave system but were never implemented, prompting the use of proprietary high-performance mixtures on critical projects.(8)

To overcome cost and supply constraints associated with proprietary mixtures, NJDOT collaborated with academia and industry partners to develop performance-engineered alternatives. It should also be noted that

NEW JERSEY'S EXPERIENCE WITH BMD: NETWORK LEVEL BENEFITS

New Jersey DOT (NJDOT) began adoption of Superpave in the mid-1990s and fully implemented in 2001 standard specifications with an initial design compaction level of 125 gyrations (N_{design} = 125), which was designated for pavements on very high traffic roadways

> Since 2007, NJDOT's implementation of BMD increased pavements rated "Good" by 370 percent and reduced "Deficient" mileage by 63 percent.

EXTENDING PAVEMENT LIFE IN TEXAS WITH BMD: TEST TRACK INSIGHTS

In 2018, the Texas Department of Transportation (TxDOT) initiated a field experiment at the National Center for Asphalt Technology (NCAT) Test Track to evaluate the field performance of surface asphalt mixtures designed using volumetric mix design (VMD) and BMD approaches.(14) The experiment included two test sections: S10 BMD and S11 VMD, both constructed as 2.5inch mill-and-inlays over existing asphalt pavements with approximately 15 to 20 percent fatigue cracking.

maximum OT crack progression rate (CPR) of 0.45 lb.-in./in.2. The S11 VMD mixture exhibited good rutting resistance but poor cracking resistance, while the S10 BMD mixture achieved balanced performance due to higher asphalt content

aggregate (VMA) compared to the S11 VMD mixture, while maintaining the design air voids and recycled binder ratio

Table 2. Texas Mix Design Volumetrics (Data from Ref. 14).

TxDOT's BMD mixture at the test track extended payement life by at least 38 percent with a reduced life-cycle cost of 17 percent.

HIGHER CRACKING TOLERANCE LEADING IMPROVED PAVEMENT PERFORMANCE IN VIRGINIA

The Virginia Department of Transportation (VDOT) began considering implementation of BMD in 2018. This initiative aimed to address three primary issues by incorporating performance-related requirements into asphalt mix design specifications: (1) poor cracking performance of surface asphalt mixtures resulting in reduced service life: (2) a widespread perception that mixtures were under-asphalted;

mixtures. The thresholds established were a maximum 7.5 percent mass loss for the Cantabro test, a minimum cracking tolerance (CT) index of 70 for the IDT-CT at 25°C, and a maximum 8.0 mm APA rut depth at 64°C.

Subsequently, two VDOT BMD special provisions were then drafted and revised for use in pilot projects: (1) Special Provision for High Reclaimed Asphalt Pavement (RAP) Content Surface Mixtures Designed Using Performance Criteria, and (2) Special Provision for Dense Graded Surface Mixtures Designed Using Performance Criteria, In 2019, two field trials were conducted to design. produce, and place BMD asphalt mixtures incorporating combinations of different RAP contents, two binder grades, two recycling agents (RAs), and two warm mix asphalt (WMA) additives (21) In 2020, five additional

researchers at Research Counbenchmark indic several asphalt mi in 2015 to suppor mixes containing Three performance different modes of inclusion in the Cantabro mass notential: (2) the (IDT-CT; also intermediate tem resistance; and Analyzer (APA) susceptibility. In criteria were dev data to enc

Thus, an initial

deterioration. · New Jersey transformed its network-level approximately 50 graded, non-polyr

modified surfac through maintena This resulted approximately I. designed using B

Assessing Perfor To confirm the s eracking test er performance mixtures placed i surveys, Falling V cycle perspective. testing, field vis Virginia demonstrated the economic value conducted to ass navement conditi In addition, in

mixture properties and the results of the BMD

VDOT's Paven (PMS) was analyzed. The p mixtures were assessed relative to the initial

TECH BRIEF FHWA-XX-XXX

AUTHORS

Elie Y. Hajj (ORCID: 0000-0001-8568-6360), University of Nevada, Reno

Ilker Boz (ORCID: xxxx-xxxx - xxxx xxxx), and Stacey Diefenderfer (ORCID: xxxx-xxxx - xxxx - xxxx), Virginia Transportation Research Council

Fan Yin (ORCID 0000-0003-4238-9387), National Center for Asphalt

Benefits of Balanced Mix Design: Evidence from State implementation Efforts

This Technical Brief highlights the benefits of implementing Balanced Mix Design (BMD) for asphalt mixtures by State Departments of Transportation (DOTs). While the full impact of BMD requires time to quantify, data from States with several years of implementation demonstrate measurable improvements in pavement performance and service life. These findings offer agency and industry stakeholders valuable evidence to support broader adoption of BMD to enhance mixture durability, optimize the use of innovative and recycled materials, and improve long-term cost efficiency of asphalt pavements.

VDOT's BMD implementation showed that increasing the CT index from 70 to 100 improved cracking performance by 23 percent and deferred over \$6.8 million in maintenance costs.

OVERALL SUMMARY

The four case studies clearly demonstrate that the integration of mechanical testing into asphalt mix design yields quantifiable, positive impacts on pavement performance.

- · Illinois used the I-FIT to show a clear nonlinear inverse correlation between FI values and transverse cracking, meaning higher cracking resistance directly leads to improved pavement longevity and a lower rate of CRS (Condition Rating Survey)
- strategy by integrating six specific BMD mixtures into a proactive preservation program. This strategic effort, supported by mechanical tests like the OT and APA, reversed the network condition, increasing "Good" roads by 370 percent and meeting the "state-of-good-repair" goal by 2022.
- Texas experiment at the NCAT Test Track provided compelling side-by-side evidence: a BMD mixture, optimized with higher asphalt content to achieve balanced rutting and cracking resistance, extended pavement life by at least 38 percent (5.5 MESALs) compared to a VMD (Volumetric Mix Design) control. Despite a 6 percent higher material cost, the BMD mixture was 17 percent more cost-effective from a life
- of higher cracking resistant asphalt mixtures through CT index. Analysis showed that increasing the production CT index from 70

to 100 could keep approximately 4.2 percent of otherwise deficient road segments in adequate condition, resulting in an estimated \$6.8 million in deferred maintenance costs for the analyzed year.

CONCLUSION

Quantifying the full benefits of BMD takes time, as measurable performance improvements typically emerge only after several years of in-service field data are available. Early findings from four lead States-Illinois, New Jersey, Texas, and Virginia-clearly indicate that BMD implementation can result in improved

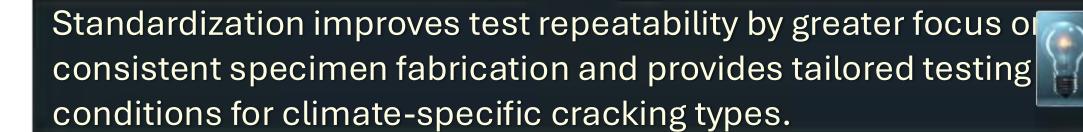
Each State applied a different approach to assess the benefits, yet all demonstrated that BMD leads to enhanced durability, extended service life, and reduced maintenance needs. The presented data demonstrate that the BMD approach is key to building more durable and cost-effective asphalt pavements

While initial implementation involves commitment, collaboration, and investment in testing and data collection from all stakeholders, the long-term evidence shows a strong return on this collaborative effort. BMD is more than a technical enhancement to the mix design-it is a strategic shift in pavement management, enabling State DOTs to move from reactive maintenance toward proactive preservation and ensuring a better performing roadway network.

ble asphalt pavements has prompted a esign methodologies. Historically, State on (DOTs) have relied on volumetric mix fall short in ensuring long-term pavement the increasing use of innovative and imitations have contributed to frequent ased life-cycle costs.

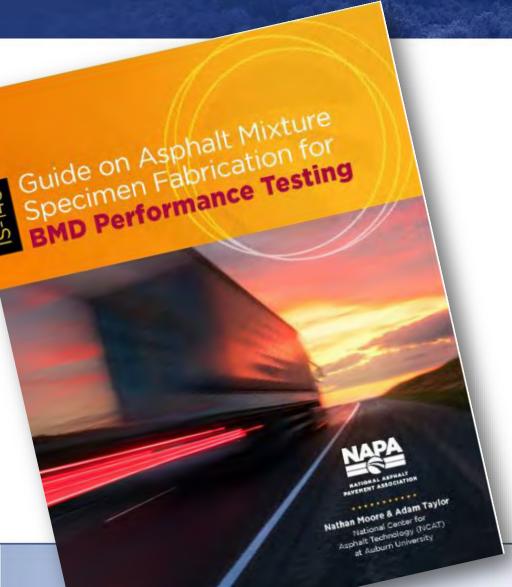
) has emerged to address these durability

Coming February 2026



 Develop protocols for handling, short-term and long-term aging, and conditioning of asphalt mixtures for BMD testing. T2-Testing
Procedures &
Protocols

 Assess the need for multiple tests to address different cracking types and varying climatic zones.



Inconsistent or lack of sample handling, aging, & conditioning methods, including lag & dwell.

Sample Preparation Guide

- As the asphalt industry moves toward BMD and performance testing it is important to remember that the preparation of the samples being tested can affect the results of the testing.
- The Guide on Asphalt Mixture Specimen Fabrication for BMD Performance Testing is helpful in obtaining consistent results

The Challenge of Time/Logistics

Sample Mix for QA

Lag Time
(with & without
Reheating)

Compact Test Specimen

Dwell Time

Condition & Test Specimen

AASHTO R 121-24 (TS 2c)

Method A

Compacted Specimen 85°C

120 ± 0.5 h 85 ± 3°C Method B

Uncompacted Loose Mixture 85°C

 $120 \pm 0.5 \text{ h}$ $85 \pm 3^{\circ}\text{C}$ Method C

Uncompacted Loose Mixture 95°C

 $t_{\text{oven}} = \text{CAI}$

Method D

Uncompacted Loose Mixture 100-125°C

20 ± 0.5 h

Method E

Uncompacted Loose Mixture 135°C

8 ± 0.5 h 135 ±3°C

$$t_{\text{oven}} = \text{CAI} = \sum_{i=1}^{N} 0.0437 d^{-0.426} e^{\frac{-1601.167}{T_i}}$$

AASHTO R 121-24 (TS 2c)

State	Short	-Term Aging	Lon	AASHTO	
	Mixture	Conditioning	Mixture	Conditioning	R 121-24
CA	Uncomp.	4 hrs at Tcomp.	Uncomp.	20 h at 100°C	Method D
IL	Uncomp.	2 hrs at 135°C	Comp.	72 h at 95°C	N/A
LA	Uncomp.	2 hrs at 135°C	Uncomp.	120 h at 85°C	Method A
ME	Uncomp.	2 hrs at 135°C	Uncomp.	20 h at 100°C	Method D
MA	Uncomp.	2 hrs at 135°C	Uncomp.	20 h at 100°C	Method D
OR	Uncomp.	2 hrs at 135°C	Uncomp.	24 h at 95°C	Method C
TX	Uncomp.	2 hrs at 135°C	Uncomp.	20 h at 100–125°C	Method D
WI	Uncomp.	4 hrs at 135°C	Uncomp.	6 h at 135°C	Method E

NCHRP

PROJECT NO. 09-70

Guidelines for Incorporating Aging Effects on Balanced Mix Design for Quality Assurance

Method A

Compacted Specimen 85°C

120 ± 0.5 h 85 ± 3°C

Method B

Uncompacted Loose Mixture 85°C

120 ± 0.5 h 85 ± 3°C

Method C

Uncompacted Loose Mixture 95°C $t_{\text{oven}} = \text{CAI}$

Method D

Uncompacted Loose Mixture 100-125°C

Method E

Uncompacted Loose Mixture 135°C

8 ± 0.5 h 135 ±3°C

TM2-Education & Training

Limited formal training on BMD test methods and data interpretation, leading to skill gaps in BMD implementation and analysis.

Opportunity

Training programs and workshops on BMD test methods and data interpretation, developing skilled staff for continued implementation.

- Collaborate with universities and industry partners to develop hands-on BMD training modules.
- Develop and deliver BMD certification programs.
- Include test method demonstrations, data analysis, and interpretation exercises in the training.

Lots of Resources

Sub-Ca M1— Change Managem M2— Cost-Benefi Analysis	Resistance replacing traditional specification BMD due to unclear goals priorities.	Alignment of B with performance goals through cle communication a understanding activarious stakehold and performance gains to decision.	 Identify internations of the shift. Document and Emphasize improperformance. Align with State Develop a comproutlining costs are Highlight performance. 	rehensive business case	ture	Sub-Category T1— BMD Tests Validation T2— Testing Procedures	Challenge Lack of a standard validation framework and timely data collection; need for linking laboratory BMD test results with field performance. Inconsistent or lack of sample handling, aging, and conditioning methods	greater focus	on improves ity by on consistent rication and ored testing	reate a standardized test validation framework. onduct validation experiments and leverage peer nowledge on validation practices Monitor in-service performance of asphalt mixtures and refine BMD test criteria. Collect and store field samples for future testing. Develop protocols for handling, short-term and long-term aging, and conditioning of asphalt mixtures for BMD testing. Assess the need for multiple tests to address different cracking types and varying climatic zones.
M3— Specifications and Risk Management M4— Resource Allocation	Uncertainty around acceptance of BMD mixtures recycled material usage, and associated budget risks. Limited funding, personnel, or equipment for implementation.	s, performance specifications aligned	Sub-Category TM1— Integration with Existing Practices TM2— Education & Training	Lack of integration of BMD into existing workflows and specifications, coupled with technical and operational disconnects between key agency groups/divisions (e.g., materials, construction, pavement management). Limited formal	Opportunity Compatibility of BM with existing workflows and specifications, streamlined testing procedures, and improved coordinatio across agency groups for effective adoption Training programs an workshops on BMD test methods and data interpretation, developing skilled staff for continued implementation.	specifica Define r across a consulta Establisi channels coordina Collabor industry hands-or Develop certifica Include demonst and inte the train	Action orkflows and tions to integrate BMD. toles and responsibilities gency groups, ints, and contractors. In clear communication to ensure seamless tion. The tate with universities and partners to develop in BMD training modules. and deliver BMD tion programs. The test method rations, data analysis, repretation exercises in	conditions for specific crack. Reducing variance increases contest results, greater trust performance supporting er and ns. Data can making a and cing. Ss for test performance quality	r climate-king types. riability nfidence in enabling tin mixture ee and innovation. inform decision- nd specifications. unce based on nance ensures and expected value	 Conduct inter-laboratory and sensitivity studies to assess variability of and improve consistency in BMD test results. Quantify variability between laboratory and plant-produced asphalt mixtures. Identify and raise awareness of production factors that may influence BMD test results. Offer technical training to stakeholders. Consider the number of replicates. Create a centralized and structured database template. Build or adopt templates to link mix design results with field performance. Incorporate many data fields with raw data. Adopt mix design verification protocols using verification lots, test strips, or batch mixtures at the start of production. Implement go/no-go BMD test criteria.
plementation in finning f	or BMD rollout. t t sineven buy-in ross are keepeld.	Structured implementation into manageable, rackable tasks for treamlined adoption.	cl A M too	Lack of cross-agency collaboration and knowledge sharing, with agencies working in isolation.	Increased cross-agent collaboration, pooling resources, and expertise to accelerate shared learning and adoption.	new staf turnover cy Facilitat groups a agency of Share sp learned, agencies Seek inc with effor	f to address high e regional working nd roundtables for cross- collaboration. ecifications, lessons and templates across . clustry feedback to align ective practices. ap between research and	density	vance specifications	 Define lot and sublot sizes, are presented and sublot sizes. Establish payment structures closely aligned we validated BMD tests that reliably reflect field performance and account for production variate to enable justified performance-oriented incersor penalties. Address sampling responsibilities and lag/dweating impact on dispute resolution.* Determine which volumetric and aggregate properties can be relaxed or eliminated.
E	bet	if support for the support for	ong ailor outreach to small and ghlighting mutual benefits	large contractors,		Usa	uaditio	olumetric inn	ovation and risk. By ts may replace some lumetric properties.	• Transition towards performance measures, such as percent within limits.

State Participants Key Takeaways (1/3) ANE

Start with a Plan

- Define Your "Why"
 - ILA Identify Champions
- Account for Staffing Needs

State Participants Key Takeaways (2/3) ASPHALT

Start Validation Early

Transition Mindset

Collaborate with Industry

Leverage Peer Resources

Utilize Existing Funding

State Participants Key Takeaways (3/3) AIEI

Build a Strong Data System

Encourage Regional Collaboration

Plan for Setbacks

Wrap Up

What are Your Takeaways?

ASPHALT

PERFORMANCE

CHARACTERISTICS

CHARACTERISTICS

Tier 3

(Max reliance on mechanical tests)

- Retains ≤2 specification requirements related to performance characteristics.
- Includes mechanical tests extensively field validated.

Tier 2

(Moderate relaxation or removal of spec. requirements)

- Changes ≥3 specifications (≥1 constituent + ≥1 volumetric).
- Changes pertain only to properties tied to the targeted performance characteristic.

Tier 1

(Minimal relaxation from existing specs)

- Adjusts 1+ volumetric property.
- No changes to related constituent material requirements.
- Involves minimal specification changes.

WHERE FLEXIBILITY MEETS PERFORMANCE GOALS...

Q & A ASPHALT | INNOVATE | ENLIGHTEN | IMPLEMENT Microsoft Stock Image

